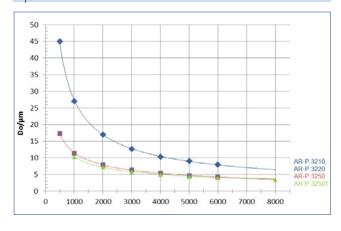


Positive Photoresist AR-P 3200

AR-P 3200 photoresist series for high film thicknesses

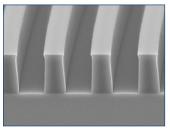
Thick positive resists for electroplating and microsystems technology


Characterisation

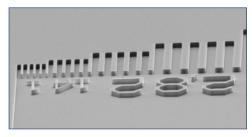
- broadband UV, i-line, g-line
- high photosensitivity, high resolution
- profiles with high edge steepness dimens. accuracy
- plasma etch resistant, electroplating-stable
- 3210/3250 for film thicknesses up to $40 \, \mu m/20 \, \mu m$
- 3220 transparent for thick films up to 100 μ m in multiple coating steps, 100 μ m development in one step
- combination of novolac and naphthoquinone diazide
- safer solvent PGMEA

Properties I

Parameter / AR-P	3210	3220	3250(T)
Solids content (%)	47	47	39
Viscosity 25 °C (mPas)	1990	1820	250
Film thickness/ 4000 rpm (µm)	10	10	5
Resolution (µm)	4.0	3.0	1.2
Contrast	2.0 2.0 2.5		
Flash point (°C)	42		
Storage 6 month (°C)	10 - 18		


Spin curve

Properties II


Glass transition temperature		8	
Dielectric constant	3.1		
Cauchy coefficients	N ₀	1.597	
AR-P 3210	N_1	79.5	
	N ₂	105.1	
Plasma etching rates (nm/min)	Ar-sputtering	7	
(5 Pa, 240-250 V bias)	02	170	
	CF ₄	39	
	80 CF ₄	90	
	+ 16 O ₂		

Structure resolution

AR-P 3210 Film thickness 12 µm Resist structures 4 µm

Resist structures

AR-P 3220 Film thickness 25 µm

Process parameters

Substrate	Si 4" wafer	
Tempering	95 °C, 10-15 min, hot plate	
Exposure	Maskaligner MJB 3, contact exposure	
Development	AR 300-26, 1 : 3, 3 min, 22 °C	

Process chemicals

Adhesion promoter	AR 300-80
Developer	AR 300-26
Thinner	AR 300-12
Remover	AR 300-76, AR 600-71

Positive Photoresist AR-P 3200

Process conditions

This diagram shows exemplary process steps for AR-P 3200 resists. All specifications are guideline values which have to be adapted to own specific conditions. For further information on processing, "Detailed instructions for optimum processing of photoresists". For recommendations on waste water treatment and general safety instructions, "General product information on Allresist photoresists".

Coating	

AR-P 3210	AR-P 3220	AR-P 3250	AR-P 3250T
4000 rpm, 90 s	600 rpm,	4000 rpm,	4000 rpm,
10 μm ·	120 s; 30 µm	60 s; 5.0 µm	60 s; 5.0 μm

H*	95 °	C, 4 i	min	95 °C, 15 min	95 °C, 2 min	95 °C, 2 min
C*	90 min	°C,	40	90 °C, 90 min	90 °C, 30 min	90 °C, 30 min

Broadband UV, 365 nm, 405 nm, 436 nm			
Exposure dose (E ₀ , broadband UV stepper):			
450 mJ/cm ²	900 mJ/cm ²	220 mJ/cm ²	300 mJ/cm ²

AD 200 27 1.2	A D 200 27	A D 200 27	AD 200 44
AR 300-26, 1 : 2 2 min	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	,
Z min	undil.; 3 min	3 : 2; 2 min	pur; 2 min
DI-H ₂ O, 30 s			

Post-bake (optional)

Not required

Customer-specific technologies

Generation of e.g. semi-conductor properties, galvanic, MEMS

Removal

AR 300-76 or O_2 plasma ashing

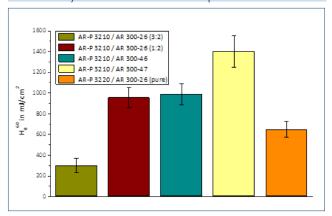
Processing instructions (for the processing of thick films > 40 μm)

<u>Coating</u>: Coating should be performed in two or several steps using the same procedure. After a low initial spin speed (30 s), a main spin speed of 250 - 500 rpm for at least 2-5 min should be chosen. A brief subsequent spinning off at 600 - 800 rpm for 5 s reduces edge bead formation.

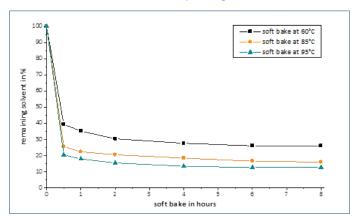
<u>Tempering</u>: Tempering should be performed in 2 steps: 1. 75 °C, 5 min hot plate or 70 °C, 30 min convection oven; 2. 90 °C, 20 min hot plate or 90 °C, 80 min convection oven. After tempering, a slow cooling is recommended to avoid stress cracks.

Development recommendations

Resist / Developer	AR 300-26	AR 300-35	AR 300-44
AR-P 3210 (up to 20 μm)	1:2 to 1:3 (2-10 min)	undil. up to 10 µm (2-10 min)	-
AR-P 3220 (up to 20 µm)	3:1 to 2:1 (2-5 min)	-	-
AR-P 3250 (up to 10 μm)	2:1 to 3:2 (1-5 min)	-	-
AR-P 3250T (up to 5 µm)	-	-	undil. up to 5 µm (1-5 min)


Positive Photoresist AR-P 3200

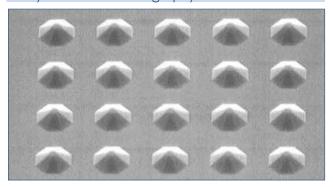
Sensitivity vs. duration of the soft bake


After 2 hours, the sensitivity remains more or less constant (broadband UV, resist thickness $20 \mu m$).

Sensitivity in different developers


Film thickness 20 μ m, soft bake 85 °C, 1 h convection oven, bb UV

Residual solvent after tempering


After a bake at 95 °C, approx. 7 % of the solvent remain in the layer (initial solids content: 47 %)

Dark erosion in different developers

Erosion corresponding to determined sensitivities

Grey tone mask lithography

 $28\ \mu m\text{-high}\ 3\ D$ pyramids with AR-P 3220

Photolysis of photo-active compound (PAC)

Chemical reaction for bleaching and full exposure of the layer (Süssreaction)

The transparency of AR-P 3220 is higher as compared to AR-P 3210, due to the lower concentration of the PAC. The gradation is accordingly relatively low. This fact can be used for the fabrication of three-dimensional structures using grey tone masks with AR-3220. Different exposure doses will result in different resist film thicknesses.